
Distributed and Consistent Multi-Image
Feature Matching via QuickMatch

The International Journal of Robotics
Research
XX(X):1–??
c©The Author(s) 2019

Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Zachary Serlin1, Guang Yang2, Brandon Sookraj1, Calin Belta1, and Roberto Tron1

Abstract
In this work we consider the multi-image object matching problem in distributed networks of robots. Multi-image feature
matching is a keystone of many applications, including simultaneous localization and mapping, homography, object
detection, and structure from motion. We first review the QuickMatch algorithm for multi-image feature matching. We
then present NetMatch, an algorithm for distributing sets of features across computational units (agents) that largely
preserves feature match quality and minimizes communication between agents (avoiding, in particular, the need of
flooding all data to all agents). Finally, we present an experimental application of both QuickMatch and NetMatch on an
object matching test with low quality images. The QuickMatch and NetMatch algorithms are compared to other standard
matching algorithms in terms of preservation of match consistency. Our experiments show that QuickMatch and
Netmatch can scale to larger numbers of images and features, and match more accurately than standard techniques.

Keywords
Computer vision, Feature matching, Object matching, Distributed matching, Multi-image matching

Introduction
Matching is a fundamental operation common in robotics
and computer vision algorithms such as Structure from
Motion (SfM), Simultaneous Localization and Mapping
(SLAM), and object detection and tracking. Matching in
these domains is typically performed on feature descriptors
(such as SIFT, ORB, and SURF by Lowe (2004),
Rublee (2011), and Bay (2008) respectively) which extract
discriminative characteristics from high dimensional data
(i.e. an image). At a fundamental level, these features
are used to associate unique objects in the universe to
their appearance in multiple views. These different views
might be acquired by a geographically dispersed camera or
robotic network, which can produce large amounts of data.
It is therefore important to have the ability to consistent
match features across multiple images (i.e, perform multi-
image matching) efficiently, consistently, accurately, and,
ideally, in a distributed manner. For instance, match quality
is key in settings such as SfM and SLAM, because the
quality of the reconstruction is a direct result of how well
the features match across images. The speed of image
matching is extremely critical in applications such as real-
time object detection. Matching consistency of features
across many images is also critical for SfM and SLAM
since feature points must be tracked not just between images,
but across multi-image sequences for the best results.
The pervasiveness of graphical processing units (GPUs),
networked systems, distributed robotics, cloud computing,
and multi-core processors, has made the distributability of
computer vision solutions relevant to their applicability.
These tools have also shown great advantages in speed and
bandwidth for other classic algorithms (Garcia (2010); Warn
(2009)). To this end, we introduce a novel version of our
matching algorithm that distributes the computational load

of the feature matching problem over multiple agents; the
resulting algorithm can handle considerably more features,
with only a slight performance loss, while minimizing the
amount of necessary communications across nodes.

Problem overview and contributions
We propose a solution to the following problem: given
a set of images taken from a team of robots or camera
network, match unique object features in a distributed
manner, as they enter and exit the images from multiple
perspectives. This problem arises often in object detection,
localization, and tracking (Bradski (2000); Cunningham
(2012); Zhou (2015)), homography estimation (Szeliski
(2010)), Structure from Motion (Hartley (2017)), and
formation control (Montijano (2016)). Solutions to this
problem are traditionally computationally complex, and
often mismatch features when considering more than two
images (Bradski (2000); Lowe (2004)), by either missing
matches between two or more views of the same entity in
the universe, or by introducing associations between separate
universe entities. Multi-image correspondences allow for
greater match reliability and a more accurate representation
of objects in the universe. Our proposed solution leverages
a relatively recent algorithm, QuickMatch (Tron (2017)),
to quickly and reliably discover correspondences across
multiple images. The experiments presented in this paper

1Boston University, Department of Mechanical Engineering, USA
2 Boston University, Division of Systems Engineering, USA

Corresponding author:
Zachary Serlin, Boston University, Department of Mechanical Engineer-
ing, 110 Cummington Mall, Boston, Massachusetts, USA.
Email: zserlin@bu.edu

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

2 The International Journal of Robotics Research XX(X)

benchmark QuickMatch’s performance by tracking a target
object and estimating its trajectory under realistic conditions
(i.e. over images with clutter, repeated structures, and poor
image quality). We then propose NetMatch, and extension
of QuickMatch to a distributed computation setting,
which largely preserves match quality while minimizing
communication across agents.

Related Work

Feature matching is a basic step in many computer vision
algorithms. Pairwise matching is the classical approach to
this task, where feature descriptors between two images
are compared based on a distance metric (e.g. Euclidean
or Manhattan distance), and declared a match if this
distance is below some threshold (Lowe (2004); Vedaldi
and Fulkerson (2008)). Pairwise matching is often posed as
a nearest neighbor search problem (Garcia (2010); Dollar
and Zitnick (2013)). This method is used in two standard
algorithms, Brute Force (BF) matching (Bradski (2000)), and
Fast Library for Approximate Nearest Neighbors (FLANN)
matching (Muja (2014)). Pairwise matching has difficulties
consistently matching entities with repetitive structure or
similar appearance (e.g. adjacent windows) because the
distance metric alone does not consider the distinctiveness
(smallest distance between features from the same image)
of the features. Including distinctiveness of features during
matching has been shown to be beneficial (Lowe (2004)).
For multi-image matching, pairwise matches scale poorly
with the number of images and across multiple images,
match correspondences often do not belong to the same
ground truth object (and hence link together correspondences
between different entities). Graph matching has also been
used for pairwise matching. This approach attempts to match
vertices (features) and edges (matches) simultaneously to
determine better pairwise matches shown by Yan and Cho
(2015) and Yan and Wang (2015), but it cannot handle the
multi-image setting for the same reasons as above.

Beyond pairwise matching, a number of other approaches
exist for multi-image matching (where multiple images are
directly considered) that are based on optimization, graphs,
and clustering. Optimization based approaches are based
upon non-convex problems where optimization constraints
must often be relaxed to reliably obtain solutions (Oliveira
(2005); Yan and Cho (2015); Chen (2014); Leonardos
(2017); Pachauri (2013)). Moreover, these approaches
typically require a priori knowledge the number of
objects, which is often not available, and they do not
consider distinctiveness of the features. Approaches based
on the explicit consideration of cycles in graphs are early
predecessors to the QuickMatch algorithm and have largely
been used to remove inconsistent matches as shown by
Huang (2013). Cycle consistency has also recently been
used in a distributed manner to perform matching by Hu
(2018) and Aragues (2011). Clustering can be cast as finding
clusters of similar features. Algorithms such as k-means
(Mackay (2003)) and spectral clustering (Ng (2002)) have
been explored to this end, but also often require a predefined
number of objects, and do not consider that a unique feature
only occurs once in an image, meaning repeat structures are
also often called a match.

Pairwise matching can also be approached as an
unsupervised learning problem, and therefore there are a
number of distributed approaches to the classic algorithms,
especially for the k-nearest neighbor problem. The k-
nearest neighbor problem has been extensively explored
in settings such as friend suggestion on Facebook, image
classification, and recommendation systems. For this reason,
many parallelized approaches have been introduced by
Johnson (2019), Andre (2017), and Gieseke (2014) and
others. In a feature matching setting, a CUDA based
distributed approach to the BF algorithm has been proposed
that is approximately 100x faster than its centralized
counterpart. Beyond matching, parallel computing has also
been applied to feature extraction algorithms such as SIFT
(Warn (2009)), offering speed increases along the entire
feature matching pipeline. These approaches still do not
consider the multi-image matching problem, however they
offer a strong motivation for distributing existing multi-
image matching techniques. Machine learning techniques
have also been used to extract more meaningful features
that are characteristic of objects in general, which adds a
layer of semantic understanding to the multi-image matching
problem (Hariharan (2015); Wang (2018); Novotny (2017)).

QuickMatch and NetMatch are grounded in density-
based clustering algorithms (see work by Fukunaga (1975);
Vedaldi and Soatto (2008); Ester (1996); Hu (2017)
for examples), which find clusters by estimating a non-
parametric density distribution of data (Parzen (1962);
Rosenblatt (1956)). These approaches do not require prior
knowledge of the number or shape of clusters, and can be
modified to include feature distinctiveness by construction.

This article is an extension of previous work presented
at the International Symposium of Experimental Robotics
Serlin (2018) and the International Conference on Computer
Vision Tron (2017). The primary extensions from this prior
work are:

• We introduce a method for distributing the matching
problem across multiple agents based on a feature space
partition. While this method is agnostic to the choice
of the local clustering method, in this paper we propose
NetMatch, which extends QuickMatch to the distributed
setting.

• We experimentally demonstrate that QuickMatch and
NetMatch outperform traditional methods in a realistic
robotic application (tracking). Moreover, we show that
the performance of NetMatch is comparable to its
centralized counterpart, while using minimal network
communications.

Outline
The remainder of this paper is structured as follows. We
begin by introducing preliminary concepts for features,
feature space partitions, and multi-image matching. We then
present the multi-image matching problem. Next, we present
first the centralized, and then decentralize solutions to the
presented problem, and we detail the theory of the approach
preformed in the experiment. We then present simulations
to compare the centralized and distributed solutions. Finally,
we present the experiment preformed and its results.

Prepared using sagej.cls

Serlin et. al. 3

Preliminaries

Images and Features
We consider a set of images I = {1, . . . , i, . . . , N}. From
each image i ∈ I, we extract a set of features Ki with a
single feature vector denoted xik ∈ RF , where F is the
dimension of the feature space (eg. for SIFT, F = 128), i
is the image index, and k ∈ Ki is the feature index in that
image. We denote the set of all features as KI and the
cardinality of a set as |KI |.

Agents and Feature Space Partitions
In the distributed setting, we consider a set of computational
units, or agents, A = {1, 2, . . . , a, . . . ,m} where a ∈ A
denotes a single agent. The feature space is denoted as Y =
RF , and is partitioned into m convex Voronoi tessellation
subspaces, where each space is assigned to a single agent
as Ya ⊆ Y with

⋃
a∈A
Ya = Y . The Voronoi partition seed

of each Ya is given as Pa ∈ RF . We define a labeling
function ` : xik 7→ a that maps a feature xik to a given agent
depending on which Ya it exists in. This labeling function
has a set-valued inverse, `−1 : a 7→ {xik}, which returns the
set of features contained in any given agent partition.

Multi-Image Matching
The multi-image matching problem presented here is
summarized from Tron (2017), and is posed in the light of
both cycle consistency in a graph of features and clustering.
We refer the reader to the original paper for detailed proofs
regarding the equivalence between thees two interpretations.

We begin by assuming that the feature space RF has a
distance metric defined as d(xik, xi′k′) 7→ R ≥ 0 between
two features. We denote the set of all features X =
{xik}i∈Ik∈1...N . When two features are a match, i.e., xi1k1 →
xi2k2 , i1 6= i2, we mean that the two features represent the
same entity. Based on this type of correspondence, we define
a directed graph of the matches as G = (V, E) with V =
{xik} and E ⊂ V × V is the set of matches xi1k1 → xi2k2 ∈
E .

We define multi-image matches as subsets of the features
in X . We therefore define, given a subset of features C ⊂
V , a subgraph of G restricted to C as G|C = (C, E ′) with
E ′ = {xi1k1 → xi2k2 ∈ E : xi1k1 , xi2k2 ∈ C}. A graph G =
(V, E) is connected if for any xi1k1 , xinkn ∈ V there exist
a sequence xi1k1 , xi2k2 , . . . , xinkn , called a path, such that
xij ,kj → xij+1,kj+1 ∈ E ∀j ∈ {1, . . . , n− 1} and a cycle is
a path where the start and end features are the same, or
xi1k1 = xinkn . We define a clique as a graph G with xi1k1 →
xi2k2 ∈ E ∀xi1k1 , xinkn ∈ V .

A set of multi-image matches is a set M = {Cc}
of clusters Cc = {xi1k1 , . . . , xinkn}, where each one
corresponds to a single entity in the universe, such that

(C1) M is a partition of X (i.e., each feature xik appears
exactly in one set Cc);

(C2) Each set Cc has at most one feature per image;

(C3) There is an induced directed graph GM = (X , EM)
of pairwise mathces such that, for any Cc ∈M, the

subgraph GM|Cc is a clique (i.e., GM is a union of
cliques).

Conditions (C1) and (C2) ensure that the same entity
cannot appear in multiple clusters, and an entity cannot
appear more than once per image. Condition (C3) requires
that features from the same cluster always match.

Given the above statements, three properties are implied
about GM,

(P1) Symmetry: xi1k1 → xi2k2 ∈ EM implies xi2k2 →
xi1k1 ∈ EM;

(P2) Cycle Constraint: Given a path xi1k1 , . . . , xinkn in
GM, having i1 = in implies k1 = kn meaning the path
is a cycle;

(P3) Single match: A feature cannot correspond to two
different features in another image, meaning that
xi1k1 → xi2k2 and xi1k1 → xi2k′2 belong to GM then
k2 = k′2.

Problem Statement
Given a set of images I = {1, 2, . . . , i, . . . , N} and a set of
Ki feature vectors, xik, extracted from each image, deter-
mine matches (xi1k1 ↔ xi2k2 : i1 6= i2) between features
from separate images, such that matched features represent
the same point in the scene and build a set of multi-image
matchesM.

Multi-image Matching via QuickMatch and
NetMatch
We present both a centralized and decentralized solution
to the stated problem. It is important to note that this
problem cannot be solved with pairwise matches alone,
as they are not capable of considering cliques directly;
specifically, they cannot prevent the violation of (C3). The
centralized solution introduces the QuickMatch algorithm
and demonstrates its effectiveness with a two-stage, offline,
centralized implementation on a system of distributed ground
robots and a central computer. Features are first extracted
using off-the-shelf feature extraction methods (SIFT), and
the features are then matched using the QuickMatch
algorithm to find a given reference object. These matches
are used to perform homography estimation between the
reference object and the camera network to generate target
trajectories. The decentralized solution, NetMatch, then
augments the QuickMatch algorithm with a framework for
distributing the features across multiple computational units
while maintaining match consistency. The same framework
could be used for other matching algorithms as well,
however in this paper we compare its results with the
centralized solution to demonstrate near equivalence in terms
of accuracy.

Feature Extraction
Feature extraction aims to find and describe representative
points from high dimensional data, such as an image (Bay
(2008); Rublee (2011); Lowe (2004); Zhou (2015)). Features
themselves are also high dimensional vectors but typically

Prepared using sagej.cls

4 The International Journal of Robotics Research XX(X)

of much lower dimension then the original data. In this
experiment, the Scale Invariant Feature Transform (SIFT)
feature is used, which extracts a set Ki of 128-dimensional
vectors that represent the appearance of each feature point.
See Lowe (2004), and Vedaldi and Fulkerson (2008) for more
details on this standard feature extraction algorithm. Other
feature types can be used, and we also tested with Oriented
FAST and Rotated BRIEF (ORB) features and Speeded-Up
Robust Features (SURF), however SIFT was qualitatively the
most reliable.

QuickMatch
The QuickMatch algorithm begins by calculating the
distance between all features (here we use the Euclidean
distance). For each image, the minimum distance, σi,
between any two features is used as the distinctiveness of
features for that image. As defined above, xik is a point in the
high dimensional feature space. The feature density D(xik)
is then calculated for each point using the formula

D(x) =
∑
ik∈KI

h(x, xik;σi), (1)

h(x1, x2;σi) = exp(−‖x1 − x2‖
2σ2

i

), (2)

σi = min
∀k,i=i′

d(xik, xi′k′), (3)

where h is a non-negative kernel function, and σ is the
distinctiveness of image i. With this feature density, the
features are organized into a tree structure, with parent nodes
being the nearest feature with a higher density,

T : parent(xik) = argmin
xi′k′∈J

d(xik, xi′k′), (4)

J = {i′k′ ∈ KI : k 6= k′, D(xi′k′) > D(xik)}. (5)

Edges are directed to parents along the gradient of feature
density, and ultimately toward the center of the parent
cluster or to another distant cluster. Once the tree has been
constructed, edges are broken if either of two criteria are met
(based on (C1)-(C3) above);

1. If parent and child groups have nodes from the same
image (i.e. i1 = i2).

2. If the edge is larger than a user defined
threshold (ρ) times the distinctiveness σi (i.e.
d(xik, parent(xik)) ≥ ρσi).

This method results in a forest of trees (M), where each tree
is a cluster (Cc) representing a unique entity in the universe.
In practice, each tree represents a point that is common
among images, meaning the algorithm discovers common
features among very similar objects. Feature discovery will
be explored further in the results section, where groups
of matching points are employed for object detection and
homography transformations.

NetMatch
The centralized QuickMatch algorithm is limited in the
number of features it can process, because a single
computational unit must handle all of the processing. This

Algorithm 1 QuickMatch

Input: K, ρ
Output: Clusters Cc (M)

for all xik, xi′k′ do
Compute h(xik, xi′k′ , σ)

for all xik do
Compute D(xik)

for all xik do
Compute parent(xik) to build T

for edges in T do . From shortest to longest
xik ∈ Cc, xi′k′ ∈ Cc′ are ends of edge
if {i} ∈ Cc ∩ {i} ∈ Cc′ = ∅ and d(xik, xi′k′) ≤

ρ argmin
σ

(Cc, Cc′) then

Merge Cc, Cc′
else

Remove edge
returnM

limitation motivates distributing the computation across
many computational nodes in order to increase the number of
features considered. A similar situation occurs when the data
is acquired and naturally distributed across different nodes.
To this end, we introduce the NetMatch algorithm, which
distributes feature over a network of computational nodes
such that each can run QuickMatch (or another equivalent
algorithm) on only a subset of the feature space.

NetMatch follows three steps:

1. Each node transmits its computed features in such a
way that one node receives all the features belonging
to a given partition of the feature space; for instance, in
a one-dimensional feature space, if a node is assigned
the partition element [1, 5], and another node had a
feature x = 3, the feature would be transmitted from
the latter to the former.

2. Each node performs QuickMatch independently on all
received features in its assigned partition, stopping,
by default, at the tree-building phase (i.e., without
breaking the trees into clusters).

3. Computational nodes identify clusters falling near the
edges of the partition. We refer to such clusters as
contested.

4. If necessary, the contested are transferred to other
nodes for re-processing.

At a high level, each node needs to process only a
subset of the entire dataset, and, more importantly, each
point is typically transferred only once, without having to
flood the entire network with the entire dataset (additional
transmissions are required only for edge cases, which are
usually a minority, see also Table 1 for a quantitative analysis
in our experiments). We next present the details of each step.

Feature Space Partitioning The goal of partitioning the
feature space is to split the computation load of QuickMatch
among m agents, ultimately allowing for more features to
be matched, while approximately maintaining multi-image
match quality. We begin by partitioning the feature space

Prepared using sagej.cls

Serlin et. al. 5

with the k-means algorithm and send features to their nearest
partition center for processing. This initial partition can split
a cluster between multiple partitions. Finding and merging
these split clusters will be the focus of the following sections.

We modify the labeling function presented in the
preliminary section to denote the round being considered
as `(xik, r) 7→ a and `−1(a, r) 7→ {xik}. In practice we
consider only r = {0, 1}, where 0 is the initial partitioning,
and 1 is the labeling after partition reassignment because
only one round is required by the NetMatch algorithm. The
algorithm begins with a naive partitioning of the features

`(xik, 0) = argmin
a∈A

d(xik, Pa) ∀xik, ik ∈ KI , (6)

where the set of Voronoi seeds PA = {Pa}a∈A can
be found using, for instance, an unsupervised k-means
algorithm (MacQueen (1967)), either on a training set, or
on the actual data with a distributed version of k-means (the
latter, under our all-to-all communication model, it can be
implemented with a small amount of communications and,
more importantly, without sharing all the data across all the
nodes).

As an alternative, in larger data sets, and in a more
distributed setting, the choice of PA can be done at random
(using a common seed for a pseudorandom generator, all
of the nodes can agree on the same set of PA without
explicit communication); however, the random partition
seeding procedure can have an effect on the overall match
quality (see also Figure 6 for a quantitative analysis with our
experimental setup).

Example 1: Given a set of features shown in Figure 1 (in
gray), we generate three Voronoi seeds, P0, P1, P2 (in blue)
as shown. The Voronoi partition boundary is represented by
the dashed lines. �

Tree Building Once PA is determined, we send features
to their respective agents based on `(xik, 0), and at each
agent. We then calculate the density of each feature as in
Equation 1; unlike QuickMatch however, we propose to
explicitly require that use of a density kernel with finite
support, in order to limit interaction of density across the
partition boundaries. Specifically, in our implementation we
use a truncated quadratic kernel,

h(x1, x2;σ) =

{
− (‖x1−x2‖)2

σ + 1 ‖x1 − x2‖ < σ.

0 otherwise,
(7)

Once the density is calculated, we build a tree Ta for each
agent a ∈ A according to

Ta : parent(xik) = argmin
xi′k′∈J

d(xik, xi′k′), (8)

J = {i′k′ : k 6= k′, D(xi′k′) > D(xik), xik ∈ Ya}. (9)

Similarly to the distinctiveness in QuickMatch, we now
introduce an agent-specific distinctiveness metric, defined as

σa = max
p∈KI∩`−1(a)

(σp) ∀i ∈ `−1(a, 0), (10)

where
σp = d(xp, parent(xp)) (11)

(in practice, p indexes the features in a given partition).
We next use {σa} to determine if individual features may

belong to clusters split by the artificial boundaries of the
Voronoi partition, as detailed in the next step.

Note (NetMatch Lite): If the NetMatch algorithm is stopped
at this point, and the trees built (Ta) are broken based on
the rules in QuickMatch above, this algorithm is denoted
NetMatch Lite. We use this algorithm in our experiments to
benchmark the improvements gained by evaluating contested
features (i.e., the next steps) in the full NetMatch algorithm.
The NetMatch Lite algorithm can be considered as naively
running k-means to partition the feature space, and then
running QuickMatch individually in each partition.

Example 1 Cont.: With the features (in gray) in Figure 1,
three trees are constructed (one in each partition) based on
the density of features. This means, in this example, the
features nearest the seed points would have a higher density
and would therefore be closer to the root of the tree. �

Partition Boundary Distance To find the minimum distance
between a feature and the boundaries that are generated
by the Voronoi partition, we formulate the following
problem: Consider a set of root nodes {P0, ..., Pm} and their
corresponding regions {Y0, ...,Ym}, given a test node xt ∈
Yt and evaluation node Pe ∈ Ye, where Ye ⊂ Y \ Yt, find
the minimum distance dmin, and the corresponding hyper-
plane, to xt. A graphical illustration of this problem can be
found below in Figure 1.

P0

P1

P2

xt
xmin

dmin

Y0

Y1 Y2

Figure 1. Illustration of Voronoi boundary distance problem.

Given the test feature node xt, its current root node Pt and
the root node that we want to evaluate Pe, we formulate a
Quadratic Program (QP) as the following:

min
x∈RF

(xt − x)T (xt − x)

s.t. (
Pe − Pt
‖Pe − Pt‖

)T (x− Pt)−
d(Pt, Pe)

2
≥ 0,

(12)

where d(Pt, Pe) is the pairwise distance between Pe and Pt.
We obtain the closet point xmin on the Voronoi boundary
that has the minimum distance to xt. By iterating through all
possible root nodes Pe, ∀e 6= t, we find the global minimum
distance and its corresponding root node and its partition
index

dika = d(xika, xmin). (13)

Prepared using sagej.cls

6 The International Journal of Robotics Research XX(X)

The boundary distance calculation could be simplified by
considering only the partition boundary between the two
nearest points in PA since the boundary is a Voronoi partition
(however, this optimization is not present in our current
implementation for the experiments below).

Example 1 Cont.: Feature xt in Figure 1, is singled out
to determine its minimum distance to a boundary. That
distance, dmin is shown, along with the nearest point on the
boundary xmin, which is used for computing dika. �

Contested Feature Re-assignment Once we are able to
determine the distance between a feature and the partition
boundary, we can then determine the contested features in
each region. These features are the ones that may require
reassignment to another partition’s tree and are in danger
of being mismatched due to the feature space partitioning
splitting their cluster. This contested set of features Sa is
defined as

Sa = {a′ ∈ A \ a : (dika + daa′) < σp}
∀xi,k ∈ `−1(a, r) ∀a ∈ A, (14)

where

daa′ = min
xik∈`−1(a′,0)

dika′ (15)

dika′ = d(xika′ ,Ya)
a′ 6= `(xik, 0)

(16)

where dika is the distance between each feature xika and
the boundary of the partition of a′, and daa′ is the minimum
distance between the feature in a′ and the Ya boundary.

Intuitively, if the inequality in Equation 14 is true, there
could be a feature in a′ that could belong to the same cluster
as xik. Note that this test is conservative, because it considers
a worst-case analysis, but it also requires only a single value
daa′ be communicated between agents. Figure 2 illustrates
an example of this check; in this case, xika is not contested
with a′ because the inequality in Equation 14 is false (i.e.
(dika + daa′) ≥ σp).

parent(xika)

Xa

xika′

xika dika

daa′

σp

Figure 2. Example of comparison to determine if a point is
contested.

Example 1 Cont.: For each feature, we check the inequality
(dika + daa′) ≥ σp, which indicates if there could be a
nearer point on the other side of the boundary than to

the feature’s current parent feature. This comparison is
illustrated in Figure 2. �

Once the contested features are determined, we break the
agent tree into a forest of trees (clusters) in the same manner
as QuickMatch, except the distinctiveness σi is calculated
over only the features in the agent’s own partition.

With the clusters formed, each agent then determines
which clusters have contested points. Formally, we check
Sa ∩ Cc 6= ∅ (i.e. the intersection between a cluster and
the contested points is not empty). For each cluster with a
contested point we determine the minimum partition index
among the contested points, and then send the cluster to that
agent now denoted a′.

Upon arrival at a′, that agent checks if

(argmin
xik∈a′

d(xik, xi′k′) ∀xi′k′ ∈ Cc) ∈ Ca′ (17)

where Cc is the newly acquired cluster. If the nearest
point to Cc ∈ Ya′ is also contested, both Cc and the
cluster containing that nearest point from Equation 17
(Cc′) are sent to the lowest partition index if that
index is lower than that agent’s index (i.e. clusters
are only transferred to agents with a lower contested
partition index). This lower index requirement prevents
switching incomplete clusters repeatedly between agents.
This process is performed by decreasing agent index,
reducing communication requirements, and the transfer of
clusters to at most once per agent.
Example 1 Cont.: Once the partition tree is broken into a
forest, for each new cluster tree we check if any features in
that cluster violated the (dika + daa′) ≥ σp inequality. If any
feature has, the cluster is marked for transfer and sent to the
nearest agent of lower index. Each agent will do the same,
meaning the transferred features can only go to a lower-
indexed agent.

Upon receiving a new cluster, an agent checks if the cluster
contains any points that it would consider contested. If so, the
agent sends the whole cluster to the nearest agent of lower
index, if one exists. �

The final step in reassignment is to rerun the tree building
and breaking routines from above to reform all of the
clusters. Although this is computationally intensive, it does
not require any further inter-agent communication. It was
also found to perform better than only reassigning the
contested points to the appropriate tree and breaking it
accordingly. For a simple example of the complete NetMatch
framework, see Figure 10 in Appendix 1.

Simulations
This paper looks to compare primarily QuickMatch with
NetMatch in simulation, and with off-the-shelf matching
tools in an experimental setting. For a detailed comparison
of the performance of QuickMatch to other state-of-the-
art matching methods (particularly multi-image matching
methods), see Tron (2017).

We begin with an illustrative example of NetMatch on
a synthetic 2 dimensional data set shown in Figures 3 and
8. Our test case includes 4 agents, and 250 feature points.
There are 25 underlying clusters, generated with random
Gaussian distributions around 25 evenly spaced points, each

Prepared using sagej.cls

Serlin et. al. 7

(a) (b) (c)

(d) (e)

Figure 3. (a) Synthetic data set features with naive k-means partition assignments. (b) Synthetic data set with xmin boundary
points plotted to highlight partition. (c) QuickMatch solution for each agent with k-means partition. (d) Initial proposed feature
switches of contested clusters. Note the values on the highlighted features denote the proposed a′ partition index. (e) Final
proposed switch assignments after partitioning section of NetMatch is complete.

with 10 sample features. Figure 3 illustrates many of the
steps in Algorithm 2. Figure 3 (a) shows the `−1(a, 0) labels
for all of the agents. The Voronoi partition seeds for the
partition are shown as triangles. Note that the clusters along
the boundaries have features of different colors, meaning
these clusters would be split and improperly matched with
just the naive partitioning approach.

The partition generated by the Voronoi seeds can be seen
in Figure 3 (b). Here, the xmin point is plotted for each
feature. It can be seen that at least three of the clusters are
split by this partition. This is further shown in Figure 3 (c),
which shows the result of QuickMatch being run on each
agent partition individually. Most notably, the central cluster
is split into three clusters. Each marker style represents
a different cluster membership (i.e. points with the same
marker belong to the same cluster).

Figure 3 (d) shows the clusters staged for initial agent
switching. Each feature that is switched has a label of where
it is being sent. Note that the central cluster has multiple
labels, meaning even after the switch, the cluster will be
segmented. Also, note that whole clusters are staged for
transfer, and that the contested region is very conservative,
since clusters even somewhat far from the boundary are
being swapped. After the agents are switched, the agents
check if the switched clusters are nearest to other contested
points. Figure 3 (e) shows the reassignment of the clusters
after this check is performed. Note that after the first swap,
the points in the central cluster are all moving toward a0. This

highlights one drawback to this approach, if the boundaries
are drawn such that higher index agents have many contested
clusters, the lower index agents end up getting assigned more
features.

Experiments

Homography and Localization

Homography is a projective transformation between two
perspective images of a planar scene that can also be used
to determine the relative pose of an object with respect
to a given reference image. The study of homography and
localization of images and objects is textbook material;
however, a brief overview is provided below as this
process is used to experimentally test QuickMatch’s
performance. More information on both homography and
object localization can be found in Hartley (2017) and
Sankaranarayanan (2008).

Given a the image coordinates x̃ (expressed in homoge-
neous coordinates) of a point belonging to a planar surface
as seen in a reference view, the image of the same point in a
novel view can be found given the homography matrix H as
Hx̃ (again, expressed using homogeneous coordinates). The
H matrix can be estimated with a set of known relative points
(or matched features) between two views. To improve the
estimate ofH , random sample consensus (RANSAC) is used
to remove match outliers by randomly sampling the matches,

Prepared using sagej.cls

8 The International Journal of Robotics Research XX(X)

finding a fit of the data, and then removing any matches that
fall outside of a user defined region (see Szeliski (2010)).

Given H , it is also possible to recover the relative
pose between the two views; this can then be used to
indirectly localize (recover the translation and rotation) of an
approximately planar object in a relative coordinate system
up to a distance scale factor, as shown in Figure 4 (a). Given
some known size of the target object (e.g., height), the scale
ambiguity can be resolved, recovering the full object relative
position. In our applications, where each image is taken
together with images from other cameras in the network,
and where the pose of each camera is known, the target
object can be accurately positioned in the global reference
frame, allowing for the generation of a target’s trajectory
(e.g., Figure 7).

Since localization using homography is limited to
approximately planar surfaces, multiple reference images
(as used here) are required to indentify different sides of
an object. Secondly, despite the use of robust estimation
(RANSAC), inaccurate matches are still possible, resulting
in outlier measurements in distance and bearing. These
inaccuracies are amplified by the sensitivity to errors in the
estimate of the object’s height when calculating the target
distance. To account for these errors, in practice, multiple
measurements can be used to estimate each position, and
then a filter can be used to smooth the target’s trajectory (e.g.
a Kalman Filter).

Experimental Setup
The experiment consists of a team of five iRobot Create2
ground robots, each with a forward facing camera,
distributed throughout the experimental area shown in Figure
4. Each camera has a 62◦ × 48◦ field of view, and takes
a 640× 480 px image at 2 Hz. Through the center of the
area, the target object is driven along the trajectory shown in
Figure 4 (a) over approximately thirty seconds. All cameras
are triggered simultaneously and the images are sent to a
central computer for feature extraction and matching. The
central computer has an Intel i7-7800x 3.5GHz processor,
and runs Ubuntu 16.04 LTS and ROS Kinetic. Features are
extracted using SIFT with an octave layer of 6, a contrast

threshold of 0.10, an edge threshold of 15, and sigma of
1.0. The matches from QuickMatch (using ρ = 1.1) and
NetMatch (using ρ = 1.1 and m = 6) are used to determine
which cameras observe the target object at each time step,
based on the number of matches with a target image (in
this experiment 10 matches are required). The matches
between each reference images and the current images are
used to determine the homography between them, using
RANSAC with a threshold of 10.0. The homography is used
to generate a bounding box around the target object using a
perspective transformation on the target image corners. The
relationship between pixel height of this box and distance
from the camera is calibrated beforehand using an object
of known size (in this case a checkerboard pattern of know
dimensions). The localization points are recorded to build
a target trajectory, which is then compared to ground truth
measurements from an OptiTrack motion capture system
(Figure 4 (b)). In an offline setting, the recorded images are
fed into the NetMatch algorithm to compare its performance
to QuickMatch in the experimental case. Once the feature
matches are generated, the same pipeline is used from above
to generate target positions.

Results
QuickMatch and NetMatch are evaluated in two ways:
pure matching performance, and in the context of a target
localization application. The algorithms are first compared
to standard matching algorithms in the OpenCV Software
Package (Bradski (2000)), Brute Force (BF), and FLANN.
These algorithms use the Euclidean distance metric and a
threshold match distance of 0.75 (Bradski (2000); Lowe
(2004)). Unlike QuickMatch and NetMatch, these algorithms
cannot consider matches across more than two images but do
have very low execution times.

QuickMatch is implemented in Python and takes 5.6
seconds to find matches between 6254 SIFT features (from
115 images), while BF and FLANN are both implemented
in C++, and both take approximately 0.05 seconds to find
the matches between the reference image features, and the
same 6254 features. This time difference arises from two
factors: the inherently slower run time of Python compared

(a) (b)

Figure 4. (a) Overhead view of experimental area with trajectory of the target object, position of the robots, and the approximate
field of view for the camera network (shown in yellow). (b) Prospective view of experimental area with modified iRobot Create2
platform, target object, and overhead OptiTrack c© motion capture system.

Prepared using sagej.cls

Serlin et. al. 9

Algorithm 2 NetMatch

Input: K, ρ, |A|
Output: Clusters Cc
. .
Compute PA given K
Compute `(xik, 0) . Eq. 6
for all a ∈ A do

for all xika, xi′k′a do
Compute h(xika, xi′k′a, σi) . Eq. 7

for all xika do
Compute D(xika) . Eq. 1

for all xik do
Compute parent(xika) to build Ta . Eq. 8

for all xik do
Compute dika . Eq. 13

for all a ∈ A do
for all a′ ∈ A, a′ 6= a do

Compute daa′ . Eq. 15
for all xika do

if dijk + daa′ ≤ σp then
xika ∈ Sa . Eq. 14

for all edges in Ta do
if {i} ∈ Cc ∩ {i} ∈ Cc′ = ∅ and d(xika, xi′k′a) ≤

ρ argmin
σ

(Cc, Cc′) then

Merge Cc, Cc′
else

Remove edge from Ta
for all Cc ∈ Ya do

if Cc ∩ Sa 6= ∅ then
Compute min index(a′) of Cc ∩ Sa
if index(a′) < index(a) then

Send Cc to a′

for all a ∈ A do . From high to low index
if Cc received from any a′ then

if (argmin
xika∈a

d(xik, xi′k′) ∀xi′k′ ∈ Cc) ∈ Sa then

Compute min index(a′) of Cc ∩ Sa
if index(a′) < index(a) then

Send Cc to a′

for all a ∈ A do
for all xika, xi′k′a do

Compute h(xika, xi′k′a, σi) . Eq. 7
for all xika do

Compute D(xika) . Eq. 1
for all xik do

Compute parent(xika) to build Ta . Eq. 8
for all edges in Ta do

if {i} ∈ Cc ∩ {i} ∈ Cc′ = ∅ and d(xika, xi′k′a) ≤
ρ argmin

σ
(Cc, Cc′) then

Merge Cc, Cc′
else

Remove edge from Ta
return All Cc(M)

to C++ (Fourment and Gillings (2008)), and the extra
comparisons done by QuickMatch to solve the entire Multi-
match problem. If BF and FLANN compared all images

with all other images combinatorially (as QuickMatch
implicitly does) their computation times would be ∼ 5.75s
seconds, which is comparable to QuickMatch’s slower
Python implementation. This time also does not account for
the post processing time necessary to reconcile inconsistent
matches from both BF and FLANN, which is not required in
QuickMatch. NetMatch’s computation time is typically one
to two orders of magnitude larger than QuickMatch because
it is currently being run as a single thread process.

(a)

(b)

Figure 5. (a) Example image matches between the reference
object image (left) and an experimental image (right): Circles
represent features, and lines indicate matches. (b) Homography
and localization of car with prospective transform of bounding
box.

Precision Versus Recall
Although QuickMatch and NetMatch are slower, they
outperform both BF and FLANN in the number of matches
correctly found, and generally in terms of precision vs.
recall (PR) and precision-recall area under the curve
(PR AUC), which are common metrics for evaluating
matching algorithms Ting (2011). Figure 6 (a) shows the
precision (fraction of correctly matched images) versus
recall (fraction of possible matches found) curves for
QuickMatch, NetMatch, BF, and FLANN. For any recall
level, QuickMatch and NetMatch maintain a higher precision
level than either BF or FLANN. Both BF and FLANN have
terminations before a recall of 0.9 because at that level of
discrimination, they are unable to find any matches in the
data. QuickMatch and NetMatch on the other hand is still
able to find some matches. These curves are non-monotonic
because mismatched features appear at a higher rate than
correctly matched features at higher thresholds. Note that
NetMatch has higher precision than QuickMatch at lower

Prepared using sagej.cls

10 The International Journal of Robotics Research XX(X)

(a)

(b)

Figure 6. (a) Precision vs. recall curves for the QuickMatch,
NetMatch (m = 6), Brute Force, and FLANN algorithms. All
algorithms are run on the same feature vectors. A match is
considered to exist if the number of matched features is above a
threshold. NetMatch is shown using 6 computation units. (b)
PRAUC calculation for NetMatch and NetMatch Lite with
increasing computation unit distribution. Error bars represent
one standard deviation values over 10 trials.

recall levels; we hypothesize that this is due to the fact
that the introduction of partitions in the dataset reduces
the interference between modes of different clusters in the
feature density. At higher recalls however, the partitioning
limits its ability to find all of the possible matches. PR
AUC is a threshold agnostic metric used for comparing
overall performance of matching algorithms (Ting (2011)).
In terms of PR AUC, QuickMatch achieves 0.64, while BF
and FLANN reach 0.49 and 0.45 respectively. The overall
increase in precision stems for QuickMatch’s ability to
consider more instances of the reference object, by matching
cycles of features across multiple images. It is therefore able
to find the reference object not only more consistently, but
with many more matched features. An example of these
matches is shown in Figure 5.

NetMatch and NetMatch Lite (see note in the Tree
Building Section above on NetMatch Lite for details) are also
evaluated on the same data set as above. There are variables
in NetMatch (random seed positions and number of agents)
that result in a variable PR curve and therefore PR AUC.
Figure 6 (b) shows the effect of these variables on the PR

AUC curve. First, note that as the number of computational
agents increases, the PR AUC for NetMatch decreases
slightly due to losses from split clusters. Second, note that
the error bars (which represent one standard deviation of PR
AUC over ten trials with different partition seeds) show that
the random seed position have a large effect on match quality.
Specifically, a good partition can increase the PR AUC by as
much as 13% in the best case and conversely a poor partition
can decrease the PR AUC by as much as 11% compared to
QuickMatch. The NetMatch Lite formulation (removing the
contested feature swap) does not greatly reduce PR AUC (on
average 3.5%) because many matches are still found (since
the percent of contested clusters is small). However, the
match quality of NetMatch Lite is shown below to be much
worst than NetMatch in an experimental setting (see the
Experiments Section below). Also, the standard deviations
show that NetMatch Lite has a generally lower PR AUC and
may be more susceptible to poor Voronoi seeding.

Homography and Localization
In order to further demonstrate the utility of the algorithms,
matches are used to localize a target object in relation to
the camera network, and then estimate its global trajectory.
This was done using all of the above algorithms with
again an identical set of SIFT features. QuickMatch and
NetMatch consider multi-image matches between the set
of target images and the set of five robot images at each
time step, while BF and FLANN consider matches between
each target image and the robot image individually. Once
feature matches are generated, RANSAC is used to estimate
the homography matrix H for each pair of images while
also removing outliers from the matches. The homography
between the reference image and each robot image is used to
generate a bounding box around the target in the robot image
as shown in Figure 5 (b). This bounding box, given a known
camera calibration, provides bearing and height information
for the target. The target height is known and is used to find
the relate distance to the target with the bounding box height.
With these two values, a distance and a bearing, the object
can be localized with respect to each robot.

The above steps are performed using the match data from
each of the above algorithms. Figures 7 (a-e) show the results
of the localization estimation for each algorithm. Red points
are estimate target poses for each time step, blue points
denote the ground truth measurements, black octagons are
the camera network positions, and the green regions are
the one standard deviation error between all localization
estimates at each time step. The localization error was found
by taking the absolute distance between the estimated and
ground truth position at each time step. The average error is
partly a factor of object height estimation, and the variance
is indicative of the match quality. QuickMatch had an error
of 0.2118± 0.4254 meters, BF had an error of 0.2349±
0.4027 meters, NetMatch had an error of 0.1167± 0.8461
meters, FLANN had an error of 0.6232± 1.1722 meters,
and NetMatch Lite had an error of 0.1324± 1.7818 meters.
QuickMatch outperforms NetMatch, NetMatch Lite, and
FLANN in terms of variance, which is indicative of its higher
match quality. BF matcher also performs well and maintains
a low variance, but does not find as many matches. FLANN
is the worst performing of the standard algorithms, and

Prepared using sagej.cls

Serlin et. al. 11

(a) QuickMatch (b) NetMatch (c) Histogram

(d) FLANN (e) BruteForce (f) NetMatch Lite

Figure 7. (a) QuickMatch trajectory estimates. (b) NetMatch trajectory estimates with 6 agents. (c) Histogram of estimate error for
each algorithm. (d) FLANN trajectory estimates. (e) BruteForce trajectory estimates. (f) NetMatch Lite trajectory estimates.

has a number of extremely erroneous estimates. Generally,
monocular camera distance measurements are very sensitive
to match errors, meaning target localization error is an
indirect method for testing the overall accuracy of each
method. Figure 7 (c) shows a histogram of the localization
error, which is found by comparing the localization estimate
to the ground truth pose at each time step. The histogram
makes it clear that QuickMatch maintains a higher number
of accurate matches and has a small number of highly
erroneous estimates. It also shows that NetMatch has a large
number of estimates around zero, and that NetMatch Lite
does very poorly when estimating the target object’s position.
In practical applications, a Kalman filter would be employed
to smooth the estimates, but the values are left unaltered here
to demonstrate the algorithm’s output.

Centralized vs Distributed Comparison

To test the difference between the distributed and centralized
approaches, we look at how many clusters are split
by naive partitions in the feature space to determine if
the distribution scheme above is even warranted. This
test is performed on images from the Graffiti data
set (http://www.robots.ox.ac.uk/˜vgg/data/data-aff.htm), in
order to simulate realistic conditions where the ground truth
is unknown. Given the clusters of features determined by
QuickMatch, Cc ∈M, we define the count of each agent
membership in the cluster as

qa(Cc) = |Cc ∩ `−1(a)|, (18)

where qa is the number of features in Cc with label a. With
this we can define the split quality Q of a cluster Cc as

Q(Cc) =
max
a∈A

(qa)

|Cc|
. (19)

With this quality metric, we can quantify the number of
contested clusters in a given partition as Cc : Q(Cc) < 1 and
the percent of contested clusters as

pcontested =
|Cc ∈M : Q(Cc) < 1|

|Cc|
. (20)

With this metric pcontested, we evaluate both two methods for
creating the initial seeds for the Voronoi partition, as well
as the ability for NetMatch to find and appropriately reassign
contested clusters. For the synthetic data set, the ground truth
is known, however for the graffiti data set, we assume that the
QuickMatch clusters are the ground truth.

To determine how many contested features, and hence split
clusters, are missed by NetMatch, we calculate the following
precision

psplit =
|SA|∑

Cc:Q(Cc)<1|Cc|
(21)

where SA is the set of all contested features in KI . In other
words, we can consider NetMatch to be in part as a classifier
that needs to detect which features are contested; then, psplit
represents the precision of the classifier (the number of
features that are declared as contested over the number of
features that ought to be declared).

The results of these tests are shown in Table 1. The
first column in Table 1 shows the results of the centralized

Prepared using sagej.cls

12 The International Journal of Robotics Research XX(X)

QuickMatch algorithm. Row five shows that as the number
of agents increases, intuitively, the percentage of contested
clusters also increases. At the same time however, the post-
QP computation time decreases as agent number decreases,
because each agent has to work on considerably fewer
features. The largest computational requirement in NetMatch
is finding the boundary distances with the QP. The time
reported for this is per-agent, however it is worth noting
the implementation of this QP is sub-optimal. In the
QP formulation, we consider each partition individually,
meaning we solve m QPs for each feature. In the future,
we plan to reduce this to combining all of the constraints to
solve a single QP and this is a focus of future work. One key
aspect of NetMatch to note is that it finds around 99 percent
of all contested points, meaning it is very good at finding
split clusters. One interesting result of NetMatch is that it
matches the features into fewer, larger clusters due to the use
of its finite density kernel. This is a counter-intuitive result
and will be a subject of future study for this algorithm.

The final clustering results from the synthetic data set in
the Simulation section are shown in Figure 8. Figure 8 (a)
shows the result of the centralized QuickMatch algorithm
run on the synthetic data, while Figure 8 (b) shows the final
result from NetMatch. Note that many of the features from
the higher index agents have been shifted to the lower index
agents, but ultimately each cluster has features belonging to

only one agent. Ultimately both algorithms are able to cluster
all of the features correctly.

Feature Discovery

The QuickMatch and NetMatch algorithms implicitly
discovers common features among images by creating
clusters of similar features. These clusters correspond to
specific locations in the universe, and therefore can be
used to find both targets and landmarks across images.
Landmarks, although not used in this paper, are points that
occur commonly across all images (except when occluded),
and are useful for multi-agent localization tasks. In the
experimental images collected, landmarks were the clusters
with the largest number of features, because many of
this images did not contain the target object. An example
landmark cluster is shown in Figure 9 (a). Features belonging
to the target object are generally smaller than the landmark
clusters, but can still be extracted, and show key features of
the target. Figure 9 (b) shows one such cluster, which is the
front hood of the car model. Feature discovery is one attribute
of QuickMatch and NetMatch that does not exist in either BF
or FLANN and can be useful for discerning what features are
most descriptive of images from the network.

Table 1. Comparison of QuickMatch to NetMatch by agent number on graffiti data set.
Number of Agents 1 2 3 4 5 6 7 8 9 10 15 20 25

Compute Time
Per Agent (s) 1.37 21.53 24.62 25.64 27.72 27.93 29.40 29.06 29.29 30.00 31.21 30.59 30.68

Post-QP Compute Time
Per Agent (s) 1.37 5.14 3.81 2.25 2.53 1.95 1.85 1.05 1.12 1.18 0.77 0.72 0.67

QP Time
Per Agent (s) NA 16.39 20.81 23.39 25.18 25.98 27.53 27.46 27.76 28.59 30.08 29.82 30.00

Percent Contested
Clusters 0 18.21 28.62 27.51 21.43 29.24 35.42 46.34 40.13 39.78 42.87 48.71 52.16

Number of
Clusters Found 1320 1313 1314 1278 1265 1264 1281 1258 1269 1264 1246 1259 1309

% Contested Features
Missed NA 0.20 0.13 0.13 0.17 0.36 0.10 0.23 0.09 0.37 0.43 0.76 0.90

(a) (b)

Figure 8. (a) Clustering result from the centralized QuickMatch algorithm on the synthetic data set. Feature color denotes cluster
membership. (b) Clustering result from the NetMatch algorithm on the synthetic data set. Feature color denotes agent membership.

Prepared using sagej.cls

Serlin et. al. 13

(a)

(b)

Figure 9. (a) Landmark feature cluster. (b) Target feature cluster.

Conclusion

This paper highlights the utility of QuickMatch multi-image
matching for object matching and presents the NetMatch
algorithm. QuickMatch is able to find many more object
feature matches than standard methods by considering
matches across all images, not just pairwise matches. The
presented experiment tests the QuickMatch algorithm in an
experimental setting with realistic conditions, and shows
that multi-image matching is superior to standard methods
at matching the reference object (even as it enters and
exits images across the entire camera network). QuickMatch
is also tested with a target object localization and again
outperforms both the BF and FLANN algorithms. Beyond
testing QuickMatch, we demonstrate the capabilities of
NetMatch as a distributed solution to the same problem.
We also demonstrate QuickMatch’s feature discovery ability
by showing a characteristic landmark and target feature
cluster from the test images. This approach is the precursor
to an online and decentralized approach. Our future work
will focus on the online version of object discovery and
localization and multi-camera homography. We also plan to
decrease the Distributed QuickMatch’s QP implementation
computation time. Overall, QuickMatch is shown to be a
versatile multi-feature matching algorithm that outperforms
standard pairwise matching algorithms, and NetMatch offers
an avenue for the QuickMatch framework to handle a large
volume of features with minimal inter-agent communication.

Acknowledgements

This work was supported by the National Science Foundation under
grants NRI-1734454, and IIS-1717656.

References

Andre F, Kermarrec A, Le Scouarnec N (2017) Accelerated
nearest neighbor search with quick adc. The 2017 ACM on
International Conference on Multimedia Retrieval (pp. 159-
166). ACM.

Aragues R, Montijano E, Sagues C (2011) Consistent data asso-
ciation in multi-robot systems with limited communications.
Robotics: Science and Systems, pages 97–104.

Bay H, Ess A, Tuytelaars T, Gool LV (2008) Speededup robust
features (SURF). Computer Vision and Image Understanding,
110(3):346–359.

Bradski G (2000) The OpenCV Library. Dr. Dobb’s Journal of
Software Tools.

Chen Y, Guibas L, Huang Q (2014) Near-optimal joint object
matching via convex relaxation. In International Conference on
Machine Learning.

Cunningham A, Wurm K, Burgard W, Dellaert F (2012) Fully
distributed scalable smoothing and mapping with robust multi-
robot data association. IEEE International Conference on
Robotics and Automation, 1093–1100.

Dollar P, Zitnick CL (2013) Structured forests for fast edge
detection. International Conference on Computer Vision.

Ester M, Kriegel HP, Sander J, Xu X (1996) A Density-based
Algorithm for Discovering Clusters a Density-based Algorithm
for Discovering Clusters in Large Spatial Databases with
Noise. Proceedings of the Second International Conference
on Knowledge Discovery and Data Mining, Portland, Oregon,
AAAI Press, 226–231.

Fourment M, Gillings M (2008) A comparison of common pro-
gramming languages used in bioinformatics. BMC Bioinfor-
matics, vol. 9, p. 82.

Fukunaga K, Hostetler L (1975) The estimation of the gradient of a
density function, with applications in pattern recognition. IEEE
Transactions on Information Theory, 21(1):32–40.

Garcia V, Debreuve E, Nielsen F, Barlaud M (2010) K-
nearest neighbor search: Fast GPU-based implementations
and application to high-dimensional feature matching. IEEE
International Conference on Image Processing, Hong Kong,
2010, pp. 3757-3760. doi: 10.1109/ICIP.2010.5654017

Gieseke F, Heinermann J, Oancea C, Igel C (2014) Buffer k-d
trees: processing massive nearest neighbor queries on GPUs.
31st International Conference on International Conference on
Machine Learning - Volume 32 (ICML’14), Vol. 32. JMLR.org
I-172-I-180.

Hariharan B, Arbelaez P, Girshick R, Malik J (2015) Hyper-
columns for object segmentation and fine-grained localization.
IEEE Conference on Computer Vision and Pattern Recogni-
tion.

Hartley R, Zisserman A (2017) Multiple View Geometry in
Computer Vision. Cambridge University Press, second edition.

Hu N, Huang Q, Thibert B, Guibas L (2018) Distributable
Consistent Multi-object Matching. IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Salt Lake City, UT,
2018, pp. 2463-2471. doi: 10.1109/CVPR.2018.00261

Hu X, Huang J, Qiu M, Chen C, Chu W (2017) PS-DBSCAN: An
Efficient Parallel DBSCAN Algorithm Based on Platform Of
AI (PAI). arXiv preprint arXiv:1711.01034.

Huang Q, Guibas L (2013) Consistent shape maps via semidefinite
programming. Computer Graphics Forum, 32(5):177-186.

Prepared using sagej.cls

14 The International Journal of Robotics Research XX(X)

Johnson J, Douze M, Jégou H, (2019) Billion-scale similarity
search with GPUs. IEEE Transactions on Big Data.

Lowe DG (2004) Distinctive image features from scale-
invariant keypoints. International Journal of Computer Vision,
60(2):91–110.

Leonardos S, Zhou X, Daniilidis K (2017) Distributed consistent
data association via permutation synchronization. IEEE
International Conference on Robotics and Automation (ICRA),
Singapore, 2017, pp. 2645-2652.

MacKay DJ (2003) Information theory, inference and learning
algorithms. Cambridge university press.

MacQueen J, (1967) Some methods for classification and analysis
of multivariate observations. The Fifth Berkeley Symposium
on Mathematical Statistics and Probability, Volume 1:
Statistics, 281–297, University of California Press, Berkeley,
Calif.

Montijano E, Cristofalo E, Zhou D, Schwager M, Sagues C
(2016) Vision-based Distributed Formation Control without an
External Positioning System. IEEE Transactions on Robotics,
vol. 32, no. 2, pp. 339-351.

Muja M, Lowe DG (2014) Scalable Nearest Neighbor Algorithms
for High Dimensional Data. IEEE Transactions on Pattern
Analysis and Machine Intelligence 36 (11), 2227-40.

Ng AY, Jordan MI, Weiss Y (2002) On spectral clustering: Analysis
and an algorithm. Neural Information Processing Systems,
2:849–856.

Novotny D, Larlus D, Vedaldi A (2017) Anchornet: A weakly
supervised network to learn geometry-sensitive features
for semantic matching. IEEE International Conference on
Computer Vision and Pattern Recognition.

Oliveira R, Costeira J, Xavier J (2005) Optimal point correspon-
dence through the use of rank constraints. IEEE Conference
on Computer Vision and Pattern Recognition, volume 2, pages
1016–1021.

Pachauri D, Kondor R, Singh V (2013) Solving the multi-
way matching problem by permutation synchronization.
Twenty-seventh Conference on Neural Information Processing
Systems.

Parzen E (1962) On estimation of a probability density function and
mode. The annals of mathematical statistics, 33(3):1065– 1076.

Rosenblatt M (1956) Remarks on some nonparametric estimates
of a density function. The Annals of Mathematical Statistics,
27(3):832–837.

Rublee E, Rabaud V, Konolige K, Bradski G (2011) Orb:
An efficient alternative to sift or surf. IEEE International
Conference on Computer Vision, Barcelona, Spain, pp. 2564-
2571.

Sankaranarayanan A, Veeraraghavan A, Chellappa R, (2008) Object
Detection, Tracking and Recognition for Multiple Smart
Cameras, Proceedings of the IEEE, vol. 96, no. 10, pp. 1606-
1624, Oct. 10.1109/JPROC.2008.928758

Serlin Z, Sookraj B, Belta C, Tron R (2018) Consistent Multi-
Robot Object Matching Via QuickMatch. The International
Symposium of Experimental Robotics.

Szeliski R (2010) Computer vision: algorithms and applications.
Springer Science & Business Media.

Ting KM (2011) Precision and Recall. Sammut C., Webb G.I. (eds)
Encyclopedia of Machine Learning. Springer, Boston, MA.

Tron R, Zhou X, Esteves C, Daniilidis K. (2017) Fast Multi-
Image Matching via Density-Based Clustering. The IEEE
International Conference on Computer Vision.

Vedaldi A, Fulkerson B (2008) VLFeat: An open and portable
library of computer vision algorithms. http://www.vlfeat.org/.

Vedaldi A, Soatto S (2008) Quick shift and kernel methods for mode
seeking. IEEE European Conference on Computer Vision,
pages 705–718. Springer.

Wang Q, Zhou X, Daniilidis K (2018) Multi-Image Semantic
Matching by Mining Consistent Features. IEEE International
Conference on Computer Vision and Pattern Recognition.

Warn S, Emeneker W, Cothren J, Apon A (2009) Accelerating SIFT
on parallel architectures. IEEE International Conference on
Cluster Computing and Workshops, New Orleans, LA, 2009,
pp. 1-4. doi: 10.1109/CLUSTR.2009.5289155.

Yan J, Cho M, Zha H, Yang X, Chu S (2015) Multi-graph
matching via affinity optimization with graduated consistency
regularization. IEEE Transactions on Pattern Analysis and
Machine Intelligence.

Yan J, Wang J, Zha H, Yang X, Chu S (2015) Consistency
driven alternating optimization for multigraph matching: A
unified approach. IEEE Transactions on Image Processing,
24(3):994–1009.

Zhou X, Zhu M, Daniilidis K (2015) Multi-Image Matching via Fast
Alternating Minimization. The IEEE International Conference
on Computer Vision.

Prepared using sagej.cls

Serlin et. al. 15

Appendix 1 - NetMatch Example

(a) Features in a 1-dimensional feature space P2 P1 P0
(b) Partitioned feature space for 3 agents (Voronoi seeds are in blue)

P2 P1 P0
(c) Overlay of finite density kernel for each feature. Partitions are
considered individually and density does not extend over the boundary.
σ values are set to the minimum distance between any two points in
the image of membership.

P2 P1 P0
(d) Feature density is calculated for each feature and the sum of
densities is shown. Points along the upper curve represent the density
value for the feature below it.

P2 P1 P0
(e) Given these densities, we build a tree in each partition where
parent nodes are the nearest node of higher density (from a different
image). This structure results in shorter edges between cluster
members and longer edges between clusters.

P2 P1 P0
(f) We break each partition tree based on edge length and image
membership. This results in the longer edges being broken. The
resulting forest of trees represents the initial clustering. Note that the
left feature in P0 should belong to the right cluster in P1.

P1 P0
(g) We then check for contested clusters with the criterion
(dika + daa′) < σp. In this case, we check if the feature on the
left of the partition could be part of a cluster on the right of the
partition. This left feature (xika) meets the above check, meaning
it and its cluster members need to be sent to P0 for evaluation.

P2 P1 P0
(h) Given the transfer cluster from (g), we rerun the tree building steps
from above and find that the new cluster should be matched with the
individual feature cluster from before.

Figure 10. (a) Feature space with features. (b) Feature space partition with 3 agents. (c) Finite kernel overlay of features. (d)
Cumulative density within partitions. (e) Feature space tree building. (f) Tree breaking to form clusters. (g) Evaluation of contested
features. (h) Correct clustering after contested features are swapped.

Prepared using sagej.cls

	Introduction
	Problem overview and contributions
	Related Work
	Outline

	Preliminaries
	Images and Features
	Agents and Feature Space Partitions
	Multi-Image Matching

	Problem Statement
	Multi-image Matching via QuickMatch and NetMatch
	Feature Extraction
	QuickMatch
	NetMatch
	Feature Space Partitioning
	Tree Building
	Partition Boundary Distance
	Contested Feature Re-assignment

	Simulations
	Experiments
	Homography and Localization
	Experimental Setup

	Results
	Precision Versus Recall
	Homography and Localization
	Centralized vs Distributed Comparison
	Feature Discovery

	Conclusion
	Appendix 1 - NetMatch Example

